Portal für Frauen in Wissenschaft und Technik
in Baden-Württemberg

Topological Computer Vision for LiDAR Point Cloud Processing in Automotive Industry (engl.)

Point clouds captured by LiDAR sensors from objects in the scenes become an important source of highly resolved environmental information for the automotive industry. The highly accurate depth information of the LiDAR point clouds made them an inevitable perception component for highly automated vehicles. However, the processing of these point clouds is challenged by their irregular and sparse distribution and the presence of various artifactual effects. Topological computer vision spans through the fascinating fields of graph-topological detection and pattern recognition, geometry-aware architectures, spectral graph theory, and manifold learning. This altogether allows the topological computer vision to tackle irregularity, sparsity, and artifactual effects of LiDAR point clouds in challenging perception and detection tasks. Besides, the manifold-based processing of the point clouds through geometrical and topological models not only fosters an efficient and discriminative data representation but also helps to reduce the curse of dimensionality if the manifold gets defined in the feature space of the perception/detection task.

Requirements: Familiarity with basics of topology, geometry, and neural networks is helpful for the understanding of the martials but is not necessarily needed.
Credit Points (ECTS): —

Faezeh Fallah

Dr.-Ing. Faezeh Fallah

Faezeh Fallah obtained her bachelor of science degree in electrical engineering with a specialization on telecommunication engineering in 2006. From 2006 up to 2011 she has worked as a designer of radio frequency heads of commercial telecommunication systems based on DVB standards. In 2011–2014 she finished her master of science degree on information technology at the university of Stuttgart and in 2014–2017 she pursued her PhD (Dr.-Ing.) degree in the faculty of electrical engineering and computer science of the university of Stuttgart in the area of artificial intelligence and processing of magnetic resonance images. Since 2017, she has been a research engineer developing algorithms based on artificial intelligence for processing and synthesis of sensor data in the automotive industry.
Profil ansehen

Buchungen

Bitte wähle ein Ticket

Ticket-Typ Preis Plätze
Studentin | Early Bird (bis 14.12.)
für Studentinnen, Schülerinnen, Nichterwerbstätige und Mitarbeiterinnen der HFU, Uni Freiburg und Uni Stuttgart
40,00 €
Berufstätige | Early Bird (bis 14.12.)
für Berufstätige mit mehr als 50% Beschäftigungsumfang und Selbständige
270,00 €
Berufstätige ermäßigt | Early Bird (bis 14.12.)
für Teilzeitbeschäftigte bis 50% Beschäftigungsumfang sowie Frauen in Elternzeit
135,00 €

Du musst dich anmelden oder registrieren, um eine Buchung vornehmen zu können.

26. Februar 2026 – 28. Februar 2026
Hochschule Furtwangen – Campus Schwenningen
Erzbergstraße 14, 78054 Villingen-Schwenningen

Genaue Kurszeiten

Do 26.02.
14:00 – 15:30 Uhr
16:00 – 17:30 Uhr

Fr 27.02.
8:30 – 10:00 Uhr
10:30 – 12:00 Uhr
14:00 – 15:30 Uhr

Sa 28.02.
8:30 – 10:00 Uhr
10:30 – 12:00 Uhr
13:30 – 15:00 Uhr