Portal für Frauen in Wissenschaft und Technik
in Baden-Württemberg

Energy-efficient Computing and Green Edge Grid: Data-driven Modelling (engl.)

To limit carbon emissions, recent research shows that utilizing photovoltaic energy sources rather than fossil fuels to produce electricity reduces the final energy demand by up to 40%. Therefore, this course aims to learn about the methods to design and devise strategies for reaching a more zero carbon emission environment.
Firstly, we learn about household solar power production predictions by applying machine learning models to a specific dataset. Households are at the Edge of the smart grid network; therefore, we utilize the available data traces and several categories of machine learning models, such as boosting and neural networks, to walk towards a greener environment.
On the other hand, one solution to help infrastructure providers, such as Cloud or Edge, achieve a greener environment is to utilize optimized orchestration strategies for distributing the user’s services. Hence, this course also covers working with Docker containers, microservice orchestrators such as Kubernetes, and developing a scheduling strategy with the help of a Kubernetes Python Client. This section of the course targets strategies to lower resource utilization and energy consumption.
We use the libraries and APIs available in Python for all the aforementioned steps.

***
Requirements: –
Credit Points (ECTS): 1, grading possible

Narges Mehran

Dr. Narges Mehran

I hold a doctoral degree in technical science of informatics from Alpen-Adria University (of Klagenfurt). In July 2024, I started my new duty as a Post-doc researcher at Salzburg Research Ltd. (SRFG), collaborating with the University of Salzburg, and specifically the privacy engineering and policy-aligned systems group. My research focus is on machine learning in energy efficiency, distributed systems, scheduling algorithms, and the design of microservice-based applications.
Profil ansehen

Buchungen

Bitte wähle ein Ticket

Ticket-Typ Preis Plätze
Studentin | Early Bird (bis 31.05.)
für Studentinnen und Nichterwerbstätige
40,00 €
Berufstätige | Early Bird (bis 31.05.) 270,00 €
Berufstätige ermäßigt | Early Bird (bis 31.05.)
Ermäßigung von 50% für TZ-Beschäftigte bis 50% Beschäftigungsumfang
135,00 €

Du musst dich anmelden oder registrieren, um eine Buchung vornehmen zu können.

29. Juli 2025 – 31. Juli 2025
Hochschule Furtwangen – Campus Schwenningen
Jakob-Kienzle-Straße 17, 78054 Villingen-Schwenningen

Genaue Kurszeiten

Di 29.07.
10:00 – 11:30 Uhr
13:30 – 15:00 Uhr
15:30 – 17:00 Uhr

Mi 30.07.
8:30 – 10:00 Uhr
10:30 – 12:00 Uhr
14:00 – 15:30 Uhr

Do 31.07.
8:30 – 10:00 Uhr
10:30 – 12:00 Uhr